当前位置:首页 > 软件开放 > 正文内容

.net分页查询代码(net 分页)

软件开放10个月前 (03-18)400

Elasticsearch 是一个实时的分布式搜索分析引擎,它的底层是构建在Lucene之上的。简单来说是通过扩展Lucene的搜索能力,使其具有分布式的功能。ES通常会和其它两个开源组件logstash(日志采集)和Kibana(仪表盘)一起提供端到端的日志/搜索分析的功能,常常被简称为ELK。

Clickhouse是俄罗斯搜索巨头Yandex开发的面向列式存储的关系型数据库。ClickHouse是过去两年中OLAP领域中最热门的,并于2016年开源。

ES是最为流行的大数据日志和搜索解决方案,但是近几年来,它的江湖地位受到了一些挑战,许多公司已经开始把自己的日志解决方案从ES迁移到了Clickhouse,这里就包括:携程,快手等公司。

一、架构和设计的对比

ES的底层是Lucenc,主要是要解决搜索的问题。搜索是大数据领域要解决的一个常见的问题,就是在海量的数据量要如何按照条件找到需要的数据。搜索的核心技术是倒排索引和布隆过滤器。ES通过分布式技术,利用分片与副本机制,直接解决了集群下搜索性能与高可用的问题。

ElasticSearch是为分布式设计的,有很好的扩展性,在一个典型的分布式配置中,每一个节点(node)可以配制成不同的角色,如下图所示:

Client Node,负责API和数据的访问的节点,不存储/处理数据。

Data Node,负责数据的存储和索引。

Master Node,管理节点,负责Cluster中的节点的协调,不存储数据。

Client Node,负责API和数据的访问的节点,不存储/处理数据。

Data Node,负责数据的存储和索引。

Master Node,管理节点,负责Cluster中的节点的协调,不存储数据。

展开全文

ClickHouse是基于MPP架构的分布式ROLAP(关系OLAP)分析引擎。每个节点都有同等的责任,并负责部分数据处理(不共享任何内容)。ClickHouse 是一个真正的列式数据库管理系统(DBMS)。

在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。让查询变得更快,最简单且有效的方法是减少数据扫描范围和数据传输时的大小,而列式存储和数据压缩就可以帮助实现上述两点。Clickhouse同时使用了日志合并树,稀疏索引和CPU功能(如SIMD单指令多数据)充分发挥了硬件优势,可实现高效的计算。Clickhouse 使用Zookeeper进行分布式节点之间的协调。

为了支持搜索,Clickhouse同样支持布隆过滤器。

二、查询对比实战

为了对比ES和Clickhouse的基本查询能力的差异,我写了一些代码来验证。

这个测试的架构如下:

架构主要包括四个部分。

1、ES stack

ES stack有一个单节点的Elastic的容器和一个Kibana容器组成,Elastic是被测目标之一,Kibana作为验证和辅助工具。部署代码如下:

services:elasticsearch:image: docker.elastic.co/elasticsearch/elasticsearch:7.4.0container_name: elasticsearchenvironment:- xpack.security.enabled=false- discovery.type=single-nodeulimits:memlock:soft: -1hard: -1nofile:soft: 65536hard: 65536cap_add:- IPC_LOCKvolumes:- elasticsearch-data:/usr/share/elasticsearch/dataports:- 9200:9200- 9300:9300deploy:resources:limits:cpus: '4'memory: 4096Mreservations:memory: 4096M

kibana:container_name: kibanaimage: docker.elastic.co/kibana/kibana:7.4.0environment:- ELASTICSEARCH_HOSTS=http://elasticsearch:9200ports:- 5601:5601depends_on:- elasticsearch

volumes:elasticsearch-data:driver: local

2、Clickhouse stack

Clickhouse stack有一个单节点的Clickhouse服务容器和一个TabixUI作为Clickhouse的客户端。部署代码如下:

tabixui:container_name: tabixuiimage: spoonest/clickhouse-tabix-web-clientenvironment:- CH_NAME=dev- CH_HOST=127.0.0.1:8123- CH_LOGIN=defaultports:- "18080:80"depends_on:- clickhousedeploy:resources:limits:cpus: '0.1'memory: 128Mreservations:memory: 128M

3、数据导入 stack

数据导入部分使用了Vector.dev开发的vector,该工具和fluentd类似,都可以实现数据管道式的灵活的数据导入。

4、测试控制 stack

测试控制我使用了Jupyter,使用了ES和Clickhouse的Python SDK来进行查询的测试。

用Docker compose启动ES和Clickhouse的stack后,我们需要导入数据,我们利用Vector的generator功能,生成syslog,并同时导入ES和Clickhouse,在这之前,我们需要在Clickhouse上创建表。ES的索引没有固定模式,所以不需要事先创建索引。

创建表的代码如下:

创建好表之后,我们就可以启动vector,向两个stack写入数据了。vector的数据流水线的定义如下:

[transforms.clone_message]type = "add_fields"inputs = ["in"]fields.raw = "{{ message }}"

[transforms.parser]# Generaltype = "regex_parser"inputs = ["clone_message"]field = "message" # optional, defaultpatterns = ['^(?Ppriority\d*)(?Pversion\d) (?Ptimestamp\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z) (?Phostname\w+\.\w+) (?Papplication\w+) (?Ppid\d+) (?PmidID\d+) - (?Pmessage.*)$']

[transforms.coercer]type = "coercer"inputs = ["parser"]types.timestamp = "timestamp"types.version = "int"types.priority = "int"

[sinks.out_console]# Generaltype = "console"inputs = ["coercer"] target = "stdout" # Encodingencoding.codec = "json"

[sinks.out_clickhouse]host = "http://host.docker.internal:8123"inputs = ["coercer"]table = "syslog"type = "clickhouse"

encoding.only_fields = ["application", "hostname", "message", "mid", "pid", "priority", "raw", "timestamp", "version"]encoding.timestamp_format = "unix"

[sinks.out_es]# Generaltype = "elasticsearch"inputs = ["coercer"]compression = "none" endpoint = "http://host.docker.internal:9200" index = "syslog-%F"

# Encoding# Healthcheckhealthcheck.enabled = true

这里简单介绍一下这个流水线:

http://source.in 生成syslog的模拟数据,生成10w条,生成间隔和0.01秒。

transforms.clone_message 把原始消息复制一份,这样抽取的信息同时可以保留原始消息。

transforms.parser 使用正则表达式,按照syslog的定义,抽取出application,hostname,message ,mid ,pid ,priority ,timestamp ,version 这几个字段。

transforms.coercer 数据类型转化。

sinks.out_console 把生成的数据打印到控制台,供开发调试。

sinks.out_clickhouse 把生成的数据发送到Clickhouse。

sinks.out_es 把生成的数据发送到ES。

运行Docker命令,执行该流水线:

数据导入后,我们针对一下的查询来做一个对比。ES使用自己的查询语言来进行查询,Clickhouse支持SQL,我简单测试了一些常见的查询,并对它们的功能和性能做一些比较。

返回所有的记录

匹配单个字段

匹配多个字段

单词查找,查找包含特定单词的字段

范围查询, 查找版本大于2的记录

查找到存在某字段的记录

ES是文档类型的数据库,每一个文档的模式不固定,所以会存在某字段不存在的情况;而Clickhouse对应为字段为空值

正则表达式查询,查询匹配某个正则表达式的数据

聚合计数,统计某个字段出现的次数

聚合不重复的值,查找所有不重复的字段的个数

我用Python的SDK,对上述的查询在两个Stack上各跑10次,然后统计查询的性能结果。

我们画出出所有的查询的响应时间的分布:

总查询时间的对比如下:

通过测试数据我们可以看出Clickhouse在大部分的查询的性能上都明显要优于Elastic。在正则查询(Regex query)和单词查询(Term query)等搜索常见的场景下,也并不逊色。

在聚合场景下,Clickhouse表现异常优秀,充分发挥了列村引擎的优势。

我的测试并没有任何优化,对于Clickhouse也没有打开布隆过滤器。可见Clickhouse确实是一款非常优秀的数据库,可以用于某些搜索的场景。当然ES还支持非常丰富的查询功能,这里只有一些非常基本的查询,有些查询可能存在无法用SQL表达的情况。

三、总结

本文通过对于一些基本查询的测试,对比了Clickhouse 和Elasticsearch的功能和性能,测试结果表明,Clickhouse在这些基本场景表现非常优秀,性能优于ES,这也解释了为什么有很多的公司应从ES切换到Clickhouse之上。

来源:https://zhuanlan.zhihu.com/p/353296392

了解下大型企业是如何建设 DevOps、BizDevOps、AIOps、SRE的,10月26-27日,GOPS 全球运维大会 2023 · 上海站,期待与您共同成长~

数字化浪潮,数据中心场景下的数字孪生该如何探索与实践 “高效运维”公 众号诚邀广大技术人员投稿投稿邮箱: jiachen@greatops.net,或添加联系人微信:greatops1118。

点个“在看”,一年不宕机

.net分页查询代码(net 分页)

扫描二维码推送至手机访问。

版权声明:本文由飞速云SEO网络优化推广发布,如需转载请注明出处。

本文链接:http://hon-tex.cn/post/97607.html

分享给朋友:

“.net分页查询代码(net 分页)” 的相关文章

工业软件开发(工业软件开发难度)

工业软件开发(工业软件开发难度)

今天给各位分享工业软件开发的知识,其中也会对工业软件开发难度进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、工业软件开发技术专业学什么 2、博士工业软件开发有出路吗 3、为什么工业软件开发一般用的都是QT? 4、工业软件和java后端开发的区别...

梦幻西游藏宝阁手游交易平台(梦幻西游藏宝阁手游交易平台混服)

梦幻西游藏宝阁手游交易平台(梦幻西游藏宝阁手游交易平台混服)

今天给各位分享梦幻西游藏宝阁手游交易平台的知识,其中也会对梦幻西游藏宝阁手游交易平台混服进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、梦幻西游手游有藏宝阁吗 2、梦幻西游藏宝阁在哪里? 3、手游《梦幻》有藏宝阁吗? 4、梦幻西游藏宝阁在哪里...

数字藏品系统开发搭建(藏品数字化管理)

数字藏品系统开发搭建(藏品数字化管理)

今天给各位分享数字藏品系统开发搭建的知识,其中也会对藏品数字化管理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、数字藏品系统开发,数藏app系统搭建 2、数字藏品“粉墨登场”元话搭建数字藏品电商系统 3、数字藏品怎么开发的? 数字藏品系统开发,数...

帝国cms模板免费下载(帝国cms模板免费下载安装)

帝国cms模板免费下载(帝国cms模板免费下载安装)

本篇文章给大家谈谈帝国cms模板免费下载,以及帝国cms模板免费下载安装对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、帝国CMS首页怎么使用网络上下载的帝国CMS模板,尽量详细点,要是对应6.0版的,谢谢… 2、帝国CMS学校用模板,能直接修改后使用的,满意后追加1...

用Python设计小游戏(python设计小游戏谁先走到17谁就赢)

用Python设计小游戏(python设计小游戏谁先走到17谁就赢)

本篇文章给大家谈谈用Python设计小游戏,以及python设计小游戏谁先走到17谁就赢对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、Python实现消消乐小游戏 2、用Python写一个简单的小游戏 3、python简单小游戏代码 怎么用Python制作简单小...

招聘表格模板免费下载(招聘表格模板免费下载安装)

招聘表格模板免费下载(招聘表格模板免费下载安装)

今天给各位分享招聘表格模板免费下载的知识,其中也会对招聘表格模板免费下载安装进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、如何制作个人简历表格 2、简历表怎么制作 3、如何写招聘启事? 4、个人简历在哪里制作 如何制作个人简历表格 1、简历有...